Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel
The effects of the stress state and temperature on the martensitic phase transformation behavior in a TRIP-assisted steel (TRIP780) were investigated using multi-axial experimental techniques. For this purpose, five different stress states were considered; i.e., uniaxial tension, uniaxial compressio...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2015-09, Vol.97, p.435-444 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of the stress state and temperature on the martensitic phase transformation behavior in a TRIP-assisted steel (TRIP780) were investigated using multi-axial experimental techniques. For this purpose, five different stress states were considered; i.e., uniaxial tension, uniaxial compression, equi-biaxial tension, plane strain tension and simple shear. A range of temperatures from room to 100°C for each stress state condition except the simple shear test were investigated. In particular, for the equi-biaxial tension data in warm conditions, a specially designed hydraulic bulge experiment was adopted. In situ magnetic measurements were performed to monitor the evolution of the martensitic content throughout each experiment. A stress state and temperature dependent transformation kinetics law was proposed, which incorporates a non-linear function of the stress triaxiality, Lode angle parameter and temperature. This new model captures the measured martensitic phase transformation kinetics of TRIP780 steel over a wide range of stress states and temperature reasonably well. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2015.06.023 |