Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel

The effects of the stress state and temperature on the martensitic phase transformation behavior in a TRIP-assisted steel (TRIP780) were investigated using multi-axial experimental techniques. For this purpose, five different stress states were considered; i.e., uniaxial tension, uniaxial compressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2015-09, Vol.97, p.435-444
Hauptverfasser: Kim, Hwigeon, Lee, Jinwoo, Barlat, Frédéric, Kim, Daeyong, Lee, Myoung-Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of the stress state and temperature on the martensitic phase transformation behavior in a TRIP-assisted steel (TRIP780) were investigated using multi-axial experimental techniques. For this purpose, five different stress states were considered; i.e., uniaxial tension, uniaxial compression, equi-biaxial tension, plane strain tension and simple shear. A range of temperatures from room to 100°C for each stress state condition except the simple shear test were investigated. In particular, for the equi-biaxial tension data in warm conditions, a specially designed hydraulic bulge experiment was adopted. In situ magnetic measurements were performed to monitor the evolution of the martensitic content throughout each experiment. A stress state and temperature dependent transformation kinetics law was proposed, which incorporates a non-linear function of the stress triaxiality, Lode angle parameter and temperature. This new model captures the measured martensitic phase transformation kinetics of TRIP780 steel over a wide range of stress states and temperature reasonably well.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2015.06.023