The reactor antineutrino anomaly

Recently, new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu, and 238U, increasing the mean flux by about 3 percent. To a good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2013-01, Vol.408 (1), p.12025-4
1. Verfasser: Mention, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu, and 238U, increasing the mean flux by about 3 percent. To a good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances below 100 m leads to a ratio of observed event rate to predicted rate of 0.976 ± 0.024. With our new flux evaluation, this ratio shifts to 0.943 ± 0.023, leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-ν data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Δm2new| > 1.5 eV2 (95%) and sin2(2θnew) = 0.14 ± 0.08 (95%).
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/408/1/012025