Left and Right Hand Movements EEG Signals Classification Using Wavelet Transform and Probabilistic Neural Network
Electroencephalogram (EEG) signals have great importance in the area of brain-computer interface (BCI) which has diverse applications ranging from medicine to entertainment. BCI acquires brain signals, extracts informative features and generates control signals from the knowledge of these features f...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2015-02, Vol.5 (1), p.92-101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electroencephalogram (EEG) signals have great importance in the area of brain-computer interface (BCI) which has diverse applications ranging from medicine to entertainment. BCI acquires brain signals, extracts informative features and generates control signals from the knowledge of these features for functioning of external devices. The objective of this work is twofold. Firstly, to extract suitable features related to hand movements and secondly, to discriminate the left and right hand movements signals finding effective classifier. This work is a continuation of our previous study where beta band was found compatible for hand movement analysis. The discrete wavelet transform (DWT) has been used to separate beta band of the EEG signal in order to extract features. The performance of a probabilistic neural network (PNN) is investigated to find better classifier of left and right hand movements EEG signals and compared with classical back propagation based neural network. The obtained results shows that PNN (99.1%) has better classification rate than the BP (88.9%). The results of this study are expected to be helpful in brain computer interfacing for hand movements related bio-rehabilitation applications. |
---|---|
ISSN: | 2088-8708 2088-8708 |
DOI: | 10.11591/ijece.v5i1.pp92-101 |