Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)

Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si sub(0.991) Ge s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-05, Vol.91 (20)
Hauptverfasser: Hohensee, Gregory T, Fellinger, Michael R, Trinkle, Dallas R, Cahill, David G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 91
creator Hohensee, Gregory T
Fellinger, Michael R
Trinkle, Dallas R
Cahill, David G
description Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si sub(0.991) Ge sub(0.009) across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718952260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718952260</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17189522603</originalsourceid><addsrcrecordid>eNqVjTsOwjAQRC0EEuFzB5ekCFobArhGfHoo6JAJCzEkNnjt-xOkcACqNyO90XRYIvIcMjnLT90mg1plIKToswHRA0DM1Vwm7Hks0de64sFrSy_nA9eFd0S8NPcye3kkih45YW0KZ6-xCM5nNYbfxATjLDeWHwzX9voFxcsEpkqJlO-wbQAqHbHeTVeE45ZDNtlujut98-LeESmca0MFVpW26CKdxVKsVC7lAmZ_qB_ujkwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718952260</pqid></control><display><type>article</type><title>Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)</title><source>American Physical Society Journals</source><creator>Hohensee, Gregory T ; Fellinger, Michael R ; Trinkle, Dallas R ; Cahill, David G</creator><creatorcontrib>Hohensee, Gregory T ; Fellinger, Michael R ; Trinkle, Dallas R ; Cahill, David G</creatorcontrib><description>Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si sub(0.991) Ge sub(0.009) across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><language>eng</language><subject>Condensed matter ; Crystal structure ; Diamond anvil cells ; Electrical resistivity ; Electronics ; Heat transfer ; Silicon ; Thermal conductivity</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-05, Vol.91 (20)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Hohensee, Gregory T</creatorcontrib><creatorcontrib>Fellinger, Michael R</creatorcontrib><creatorcontrib>Trinkle, Dallas R</creatorcontrib><creatorcontrib>Cahill, David G</creatorcontrib><title>Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)</title><title>Physical review. B, Condensed matter and materials physics</title><description>Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si sub(0.991) Ge sub(0.009) across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.</description><subject>Condensed matter</subject><subject>Crystal structure</subject><subject>Diamond anvil cells</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Heat transfer</subject><subject>Silicon</subject><subject>Thermal conductivity</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVjTsOwjAQRC0EEuFzB5ekCFobArhGfHoo6JAJCzEkNnjt-xOkcACqNyO90XRYIvIcMjnLT90mg1plIKToswHRA0DM1Vwm7Hks0de64sFrSy_nA9eFd0S8NPcye3kkih45YW0KZ6-xCM5nNYbfxATjLDeWHwzX9voFxcsEpkqJlO-wbQAqHbHeTVeE45ZDNtlujut98-LeESmca0MFVpW26CKdxVKsVC7lAmZ_qB_ujkwg</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Hohensee, Gregory T</creator><creator>Fellinger, Michael R</creator><creator>Trinkle, Dallas R</creator><creator>Cahill, David G</creator><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150515</creationdate><title>Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)</title><author>Hohensee, Gregory T ; Fellinger, Michael R ; Trinkle, Dallas R ; Cahill, David G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17189522603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed matter</topic><topic>Crystal structure</topic><topic>Diamond anvil cells</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Heat transfer</topic><topic>Silicon</topic><topic>Thermal conductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hohensee, Gregory T</creatorcontrib><creatorcontrib>Fellinger, Michael R</creatorcontrib><creatorcontrib>Trinkle, Dallas R</creatorcontrib><creatorcontrib>Cahill, David G</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohensee, Gregory T</au><au>Fellinger, Michael R</au><au>Trinkle, Dallas R</au><au>Cahill, David G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>91</volume><issue>20</issue><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si sub(0.991) Ge sub(0.009) across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2015-05, Vol.91 (20)
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1718952260
source American Physical Society Journals
subjects Condensed matter
Crystal structure
Diamond anvil cells
Electrical resistivity
Electronics
Heat transfer
Silicon
Thermal conductivity
title Thermal transport across high-pressure semiconductor-metal transition in Si and Si sub(0.991) Ge sub(0.009)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20across%20high-pressure%20semiconductor-metal%20transition%20in%20Si%20and%20Si%20sub(0.991)%20Ge%20sub(0.009)&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Hohensee,%20Gregory%20T&rft.date=2015-05-15&rft.volume=91&rft.issue=20&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1718952260%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718952260&rft_id=info:pmid/&rfr_iscdi=true