3-D LTCC microfluidic device as a tool for studying nanoprecipitation
Nanoparticles have been used to improve the properties of many cosmetic products, mainly the sunscreens materials using nanoencapsulation or nanosuspensions, improving the contact with active molecules, enhancing the sun protection effect and facilitating formulations in industrial products. Microfl...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2013-01, Vol.421 (1), p.12012-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticles have been used to improve the properties of many cosmetic products, mainly the sunscreens materials using nanoencapsulation or nanosuspensions, improving the contact with active molecules, enhancing the sun protection effect and facilitating formulations in industrial products. Microfluidic devices offer an important possibility in producing nanoparticles in a simple way, in one step bottom up technique, continuum process with low polidispersivity, low consumption of reagents and additives. In this work, we microfabricated a 3-D LTCC microfluidic device to study the nanoprecipitation of Benzophenone-3, used as a sunscreen in pharmaceutical products. It was observed that some parameters influence the particle size related to the total fluid flow on device, the ratio between phases, and the Benzophenone-3 initial concentration. The influence of applied voltages on particle sizes was tested also. For the processing, a high voltage was applied in a Kovar tube inserted in the 3D device. The use of microfluidic device resulted in particles with 100 up to 800 nm of size, with polispersivity index below 0.3 and offering an interesting way to obtain nanoparticles. These studies are still ongoing, but early results indicate the possibility of obtaining B-3 nanostructured material. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/421/1/012012 |