High-order algorithms for Riesz derivative and their applications (II)

In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-07, Vol.293, p.218-237
Hauptverfasser: Ding, Hengfei, Li, Changpin, Chen, YangQuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 218
container_title Journal of computational physics
container_volume 293
creator Ding, Hengfei
Li, Changpin
Chen, YangQuan
description In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes. We prove that the numerical methods for a spatial Riesz fractional reaction dispersion equation are both unconditionally stable and convergent, and the orders of convergence are O([tau] super(2) + h super(6)) and O([tau] super(2) + h super(8)), in which r and h are spatial and temporal step sizes, respectively. Finally, we test our numerical schemes and observe that the numerical results are in good agreement with the theoretical analysis.
doi_str_mv 10.1016/j.jcp.2014.06.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718944489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718944489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-eedecd83998946527de3178dd08eeb2d103bfb76297d3e410f45d2e1661d2cd83</originalsourceid><addsrcrecordid>eNotkEFLw0AQhRdRsFZ_gLcc6yFxZrPd7B6lWBsoCKLnJc1O2g1pE3fTgv56t9TTg3nfvMPH2CNChoDyuc3aesg4oMhAZgDFFZsgaEh5gfKaTQA4plprvGV3IbQAoOZCTdhy5ba7tPeWfFJ12967cbcPSdP75MNR-E1i4U7V6E6UVAebjDtykRyGztXx2h9CMivLp3t201RdoIf_nLKv5evnYpWu39_Kxcs6rXOhxpTIUm1VrrXSQs55YSnHQlkLimjDLUK-aTaF5LqwOQmERswtJ5QSLT8_Ttnssjv4_vtIYTR7F2rquupA_TEYLDAuC6F0RPGC1r4PwVNjBu_2lf8xCObszLQmOjNnZwakic7yP0P-YAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718944489</pqid></control><display><type>article</type><title>High-order algorithms for Riesz derivative and their applications (II)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ding, Hengfei ; Li, Changpin ; Chen, YangQuan</creator><creatorcontrib>Ding, Hengfei ; Li, Changpin ; Chen, YangQuan</creatorcontrib><description>In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes. We prove that the numerical methods for a spatial Riesz fractional reaction dispersion equation are both unconditionally stable and convergent, and the orders of convergence are O([tau] super(2) + h super(6)) and O([tau] super(2) + h super(8)), in which r and h are spatial and temporal step sizes, respectively. Finally, we test our numerical schemes and observe that the numerical results are in good agreement with the theoretical analysis.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.06.007</identifier><language>eng</language><subject>Approximation ; Convergence ; Derivatives ; Dispersions ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Temporal logic</subject><ispartof>Journal of computational physics, 2015-07, Vol.293, p.218-237</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-eedecd83998946527de3178dd08eeb2d103bfb76297d3e410f45d2e1661d2cd83</citedby><cites>FETCH-LOGICAL-c348t-eedecd83998946527de3178dd08eeb2d103bfb76297d3e410f45d2e1661d2cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ding, Hengfei</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><title>High-order algorithms for Riesz derivative and their applications (II)</title><title>Journal of computational physics</title><description>In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes. We prove that the numerical methods for a spatial Riesz fractional reaction dispersion equation are both unconditionally stable and convergent, and the orders of convergence are O([tau] super(2) + h super(6)) and O([tau] super(2) + h super(8)), in which r and h are spatial and temporal step sizes, respectively. Finally, we test our numerical schemes and observe that the numerical results are in good agreement with the theoretical analysis.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Dispersions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Temporal logic</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEFLw0AQhRdRsFZ_gLcc6yFxZrPd7B6lWBsoCKLnJc1O2g1pE3fTgv56t9TTg3nfvMPH2CNChoDyuc3aesg4oMhAZgDFFZsgaEh5gfKaTQA4plprvGV3IbQAoOZCTdhy5ba7tPeWfFJ12967cbcPSdP75MNR-E1i4U7V6E6UVAebjDtykRyGztXx2h9CMivLp3t201RdoIf_nLKv5evnYpWu39_Kxcs6rXOhxpTIUm1VrrXSQs55YSnHQlkLimjDLUK-aTaF5LqwOQmERswtJ5QSLT8_Ttnssjv4_vtIYTR7F2rquupA_TEYLDAuC6F0RPGC1r4PwVNjBu_2lf8xCObszLQmOjNnZwakic7yP0P-YAg</recordid><startdate>20150715</startdate><enddate>20150715</enddate><creator>Ding, Hengfei</creator><creator>Li, Changpin</creator><creator>Chen, YangQuan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150715</creationdate><title>High-order algorithms for Riesz derivative and their applications (II)</title><author>Ding, Hengfei ; Li, Changpin ; Chen, YangQuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-eedecd83998946527de3178dd08eeb2d103bfb76297d3e410f45d2e1661d2cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Dispersions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Hengfei</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Hengfei</au><au>Li, Changpin</au><au>Chen, YangQuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order algorithms for Riesz derivative and their applications (II)</atitle><jtitle>Journal of computational physics</jtitle><date>2015-07-15</date><risdate>2015</risdate><volume>293</volume><spage>218</spage><epage>237</epage><pages>218-237</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes. We prove that the numerical methods for a spatial Riesz fractional reaction dispersion equation are both unconditionally stable and convergent, and the orders of convergence are O([tau] super(2) + h super(6)) and O([tau] super(2) + h super(8)), in which r and h are spatial and temporal step sizes, respectively. Finally, we test our numerical schemes and observe that the numerical results are in good agreement with the theoretical analysis.</abstract><doi>10.1016/j.jcp.2014.06.007</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-07, Vol.293, p.218-237
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1718944489
source Access via ScienceDirect (Elsevier)
subjects Approximation
Convergence
Derivatives
Dispersions
Mathematical analysis
Mathematical models
Numerical analysis
Temporal logic
title High-order algorithms for Riesz derivative and their applications (II)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20algorithms%20for%20Riesz%20derivative%20and%20their%20applications%20(II)&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ding,%20Hengfei&rft.date=2015-07-15&rft.volume=293&rft.spage=218&rft.epage=237&rft.pages=218-237&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.06.007&rft_dat=%3Cproquest_cross%3E1718944489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718944489&rft_id=info:pmid/&rfr_iscdi=true