High-order algorithms for Riesz derivative and their applications (II)

In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-07, Vol.293, p.218-237
Hauptverfasser: Ding, Hengfei, Li, Changpin, Chen, YangQuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we firstly develop two high-order approximate formulas for the Riesz fractional derivative. Secondly, we propose a temporal second order numerical method for a fractional reaction-dispersion equation, where we discretize the Riesz fractional derivative by using two numerical schemes. We prove that the numerical methods for a spatial Riesz fractional reaction dispersion equation are both unconditionally stable and convergent, and the orders of convergence are O([tau] super(2) + h super(6)) and O([tau] super(2) + h super(8)), in which r and h are spatial and temporal step sizes, respectively. Finally, we test our numerical schemes and observe that the numerical results are in good agreement with the theoretical analysis.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2014.06.007