Periodic solutions in an epidemic model with diffusion and delay

A spatial diffusion SI model with delay and Neumann boundary conditions are investigated. We derive the conditions of the existence of Hopf bifurcation in one dimension space. Moreover, we analyze the properties of bifurcating period solutions by using the normal form theory and the center manifold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2015-08, Vol.265, p.275-291
1. Verfasser: Liu, Pan-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spatial diffusion SI model with delay and Neumann boundary conditions are investigated. We derive the conditions of the existence of Hopf bifurcation in one dimension space. Moreover, we analyze the properties of bifurcating period solutions by using the normal form theory and the center manifold theorem of partial functional differential (PFDs) equations. By numerical simulations, we found that spatiotemporal periodic solutions can occur in the epidemic model with spatial diffusion, which verifies our theoretical results. The obtained results show that interaction of delay and diffusion may induce outbreak of infectious diseases.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.05.028