Molecular Dynamics Simulations of Thermal Conductivity of Germanene Nanoribbons (GeNR) with Armchair and Zigzag Chirality

Germanene, an allotrope of germanium which is a two dimensional material with sp2 hybridization, has almost the same properties with graphene except for its buckled structure. In this study, germanium nanoribbon (GeNR) is use for it is still a new material for nanoscale level of research. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-07, Vol.772 (Advanced Research in Aerospace, Robotics, Manufacturing Systems, Mechanical Engineering and Bioengineering), p.67-71
Hauptverfasser: Paylaga, Naomi Tabudlong, Bantaculo, Rolando V., Balatero, Marissa A., Paylaga, Giovanni J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Germanene, an allotrope of germanium which is a two dimensional material with sp2 hybridization, has almost the same properties with graphene except for its buckled structure. In this study, germanium nanoribbon (GeNR) is use for it is still a new material for nanoscale level of research. In this paper, we investigate the effect of chirality on the thermal conductivity of zigzag GeNR (ZGeNR) and armchair GeNR (AGeNR) chiralities using equilibrium molecular dynamics with varied lengths at fixed temperature and varied temperatures at fixed length. The simulations were carried out in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) using Tersoff potential for the Ge-Ge interactions. The thermal conductivity is calculated using Green-Kubo method. It is found that the chirality can affect the thermal conductivity of GeNR. Our results show that thermal conductivity of AGeNR is higher than ZGeNR in both increasing temperatures and lengths similar to the thermal conductivity behavior obtained in silicene nanoribbons [Int. J. Mech. Mater. Des. 9 (2013) 105].
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.772.67