Azimuthal inhomogeneity in the MHD waveguide in the outer magnetosphere

Geomagnetic field and plasma inhomogeneities in the outer equatorial part of the magnetosphere create a channel with low Alfvén speeds which spans from the nose to the far flanks of the magnetosphere, in both the morning and the evening sectors. This channel plays the role of a waveguide for fast ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2015-06, Vol.120 (6), p.4641-4655
Hauptverfasser: Mazur, V. A., Chuiko, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geomagnetic field and plasma inhomogeneities in the outer equatorial part of the magnetosphere create a channel with low Alfvén speeds which spans from the nose to the far flanks of the magnetosphere, in both the morning and the evening sectors. This channel plays the role of a waveguide for fast magnetosonic waves. The waveguide eigenmodes and corresponding Alfvén resonance (field line resonance) regions are directly related to geomagnetic pulsations Pc3 and Pc5. U‐shaped model of the waveguide allows for full analytical investigation of waveguide eigenmodes. Quantities such as mode wave numbers, group velocities, and their energy density distribution are found as functions of coordinate along the waveguide. The linkage of the waveguide magnetosonic oscillation energy to the Alfvén waves in the vicinity of the field line resonance deeper inside the magnetosphere is investigated, and corresponding energy leakage coefficient is found. Thus, the influence of longitudinal (i.e., azimuthal) waveguide inhomogeneity on wave propagation is analytically investigated. Obtained results can be used for interpretation of the observed wave power distribution in the frequency bands of geomagnetic pulsations Pc3 and Pc5, as well as for explanation of their spectral properties in the outer magnetosphere. Key Points Two‐dimensional inhomogeneous model of the waveguide is offered The waveguide eigenmodes are described The effect of azimuthal inhomogeneity is analytically investigated
ISSN:2169-9380
2169-9402
DOI:10.1002/2014JA020819