Face Recognition Across Poses Using a Single 3D Reference Model

Face recognition across pose is generally tackled by either 2D based or 3D based approaches. The 2D-based often require a training set from which the cross-pose multi-view relationship can be learned and applied for recognition. The 3D based are mostly composed of 3D surface reconstruction of each g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2015/06/01, Vol.E98.D(6), pp.1238-1246
Hauptverfasser: HSU, Gee-Sern, PENG, Hsiao-Chia, LIN, Ding-Yu, LIN, Chyi-Yeu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face recognition across pose is generally tackled by either 2D based or 3D based approaches. The 2D-based often require a training set from which the cross-pose multi-view relationship can be learned and applied for recognition. The 3D based are mostly composed of 3D surface reconstruction of each gallery face, synthesis of 2D images of novel views using the reconstructed model, and match of the synthesized images to the probes. The depth information provides crucial information for arbitrary poses but more methods are yet to be developed. Extended from a latest face reconstruction method using a single 3D reference model and a frontal registered face, this study focuses on using the reconstructed 3D face for recognition. The recognition performance varies with poses, the closer to the front, the better. Several ways to improve the performance are attempted, including different numbers of fiducial points for alignment, multiple reference models considered in the reconstruction phase, and both frontal and profile poses available in the gallery. These attempts make this approach competitive to the state-of-the-art methods.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2014EDP7352