Ultrafast demagnetization after laser irradiation in transition metals: Ab initio calculations of the spin-flip electron-phonon scattering with reduced exchange splitting

Despite intensive research, the underlying mechanisms for ultrafast demagnetization after laser irradiation in transition metals are still not understood. We discuss the possible processes which have been suggested in order to explain the ultrafast demagnetization within several hundreds of femtosec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-12, Vol.88 (21), Article 214404
Hauptverfasser: Illg, Christian, Haag, Michael, Fähnle, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite intensive research, the underlying mechanisms for ultrafast demagnetization after laser irradiation in transition metals are still not understood. We discuss the possible processes which have been suggested in order to explain the ultrafast demagnetization within several hundreds of femtoseconds and argue that the spin angular momentum has to go to the lattice in the end. Based on this argument, we consider spin-flip electron-phonon scatterings. The demagnetization time [tau] sub(M) and the demagnetization rate dM/dt due to spin-flip electron-phonon scattering is calculated for fcc Ni and bcc Fe. Thereby, the electronic states and phononic states are calculated ab initio. We find that the demagnetization rates for fcc Ni and bcc Fe are too small to explain experimental demagnetization rates, which is in agreement with earlier publications. In addition, the demagnetization rates for band structures with reduced exchange splitting are calculated, however, also these demagnetization rates are too small. Finally, the phase space for scattering processes which is related to the maximum possible demagnetization is estimated for band structures with ground-state exchange splitting and with reduced exchange splitting. The maximum possible demagnetization is too small for bcc Fe and fcc Co but not necessarily for fcc Ni. We suggest to include magnons and to consider independent combinations of spin-flip electron-phonon and spin-flip electron-magnon scattering processes as a possible explanation for the ultrafast demagnetization.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.88.214404