Approximation with an arbitrary order by modified Baskakov type operators
Given an arbitrary sequence λn > 0, n∈N, with the property that limn→∞λn=0 so fast as we want, in this note we consider several kinds of modified Baskakov operators in which the usual knots jn are replaced with the knots j · λn. In this way, on each compact subinterval in [0,+∞) the order of unif...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2015-08, Vol.265, p.329-332 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an arbitrary sequence λn > 0, n∈N, with the property that limn→∞λn=0 so fast as we want, in this note we consider several kinds of modified Baskakov operators in which the usual knots jn are replaced with the knots j · λn. In this way, on each compact subinterval in [0,+∞) the order of uniform approximation becomes ω1(f;λn). For example, these modified operators can uniformly approximate a Lipschitz 1 function, on each compact subinterval of [0, ∞) with the arbitrary good order of approximation λn. Also, similar considerations are made for modified qn-Baskakov operators, with 0 < qn < 1, limn→∞qn=1. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2015.05.034 |