Approximation with an arbitrary order by modified Baskakov type operators

Given an arbitrary sequence λn > 0, n∈N, with the property that limn→∞λn=0 so fast as we want, in this note we consider several kinds of modified Baskakov operators in which the usual knots jn are replaced with the knots j · λn. In this way, on each compact subinterval in [0,+∞) the order of unif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2015-08, Vol.265, p.329-332
Hauptverfasser: Gal, Sorin G., Opris, Bogdan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an arbitrary sequence λn > 0, n∈N, with the property that limn→∞λn=0 so fast as we want, in this note we consider several kinds of modified Baskakov operators in which the usual knots jn are replaced with the knots j · λn. In this way, on each compact subinterval in [0,+∞) the order of uniform approximation becomes ω1(f;λn). For example, these modified operators can uniformly approximate a Lipschitz 1 function, on each compact subinterval of [0, ∞) with the arbitrary good order of approximation λn. Also, similar considerations are made for modified qn-Baskakov operators, with 0 < qn < 1, limn→∞qn=1.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.05.034