A novel membrane-type apatite scaffold engineered by pulsed laser ablation

Cell sheet technology is a scaffold-free method for tissue reconstruction. A sheet-shaped scaffold would be suitable for the regeneration of periodontal membrane. We designed a stem cell sheet combining human mesenchymal stromal cells (hMSCs) and a 10-µm thick biological apatite (BAp) membrane fabri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental Materials Journal 2015/05/29, Vol.34(3), pp.345-350
Hauptverfasser: HASHIMOTO, Yoshiya, NISHIKAWA, Hiroaki, KUSUNOKI, Masanobu, LI, PeiQi, HONTSU, Shigeki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell sheet technology is a scaffold-free method for tissue reconstruction. A sheet-shaped scaffold would be suitable for the regeneration of periodontal membrane. We designed a stem cell sheet combining human mesenchymal stromal cells (hMSCs) and a 10-µm thick biological apatite (BAp) membrane fabricated with an ArF pulsed laser ablation for periodontal regeneration. X-ray diffraction showed that crystalline hydroxyapatite (HAp) was present in BAp and HAp membranes after post-annealing. Energy dispersive analysis of the BAp membrane revealed peaks of Na and Mg in addition to Ca and P. Approximately 3×104 hMSCs were cultured on BAp and HAP membranes for 7 and 14 days. From in vitro assays, hMSCs grew faster and had higher osteoblast differentiation when cultured on the BAp membrane than did the cell culture on the HAp membrane. Stem cell sheets combined with a BAp membrane may have potential applications in guided bone regeneration and osteoconductive scaffolds.
ISSN:0287-4547
1881-1361
DOI:10.4012/dmj.2014-299