Lower hybrid current drive at high density in Alcator C-Mod

Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line-averaged densities of 10 20  m −3 (ω/ω LH ∼ 3) in single null...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2011-08, Vol.51 (8), p.83032-9
Hauptverfasser: Wallace, G.M., Hubbard, A.E., Bonoli, P.T., Faust, I.C., Harvey, R.W., Hughes, J.W., LaBombard, B.L., Meneghini, O., Parker, R.R., Schmidt, A.E., Shiraiwa, S., Smirnov, A.P., Whyte, D.G., Wilson, J.R., Wright, J.C., Wukitch, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line-averaged densities of 10 20  m −3 (ω/ω LH ∼ 3) in single null discharges with large (⩾8 mm) inner gaps, well below the density limit previously observed on limited tokamaks (ω/ω LH ∼ 2). Modelling and experimental evidence suggest that the absence of LHCD driven fast electrons at high density may be due to parasitic collisional absorption in the scrape-off layer (SOL). Experiments show that the population of fast electrons produced by LHCD at high density ( ) can be increased by operating with an inner gap of less than ∼5 mm with the strongest non-thermal emission in inner wall limited plasmas. A change in plasma topology from single to double null produces a modest increase in non-thermal emission at high density. Increasing the electron temperature in the periphery of the plasma (0.8 > r / a > 1.0) also results in a modest increase in non-thermal electron emission above the density limit. Ray tracing/Fokker–Planck simulations of these discharges predict the observed sensitivity to plasma position when the effects of collisional absorption in the SOL are included in the model.
ISSN:0029-5515
1741-4326
DOI:10.1088/0029-5515/51/8/083032