Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains
Thermal transport in graphene–polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene–polymer nanocomposite. In th...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2015-04, Vol.85, p.414-421 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal transport in graphene–polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene–polymer nanocomposite. In this work, we investigated the thermal transport across graphene–polymer interfaces functionalized with end-grafted polymer chains using molecular dynamics simulations. The effects of grafting density, chain length and initial morphology on the interfacial thermal transport were systematically investigated. It was found that end-grafted polymer chains could significantly enhance interfacial thermal transport and the underlying mechanism was considered to be the enhanced vibration coupling between graphene and polymer. In addition, a theoretical model based on effective medium theory was established to predict the thermal conductivity in graphene–polymer nanocomposites. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2015.01.009 |