Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-01, Vol.510 (1), p.12023-8
Hauptverfasser: Martemyanova, Julia A, Ivanov, Victor A, Paul, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/510/1/012023