Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23

Thiamethoxam (THIA), a second generation neonicotinoid insecticide in the thianicotinyl subclass, is used worldwide. Environmental studies revealed that microbial degradation is the major mode of removal of this pesticide from soil. However, microbial transformation of THIA is poorly understood. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2013-05, Vol.97 (9), p.4065-4074
Hauptverfasser: Zhou, Guang-can, Wang, Ying, Zhai, Shan, Ge, Feng, Liu, Zhong-hua, Dai, Yi-jun, Yuan, Sheng, Hou, Jun-yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiamethoxam (THIA), a second generation neonicotinoid insecticide in the thianicotinyl subclass, is used worldwide. Environmental studies revealed that microbial degradation is the major mode of removal of this pesticide from soil. However, microbial transformation of THIA is poorly understood. In the present study, we isolated a bacterium able to degrade THIA from rhizosphere soil. The bacterium was identified as Ensifer adhaerens by its morphology and 16S ribosomal DNA sequence analysis. High-performance liquid chromatography and mass spectrometry analysis suggested that the major metabolic pathway of THIA in E. adhaerens TMX-23 involves the transformation of its N-nitroimino group (=N–NO 2 ) to N-nitrosoimino (=N–NO) and urea (=O) metabolites. E . adhaerens TMX-23 is a nitrogen-fixing bacterium harboring two types of nifH genes in its genome, one of which is 98 % identical to the nifH gene in the cyanobacterium Calothrix sp. MCC-3A. E. adhaerens TMX-23 released various plant-growth-promoting substances including indole-3-acetic acid, exopolysaccharides, ammonia, HCN, and siderophores. Inoculation of E. adhaerens TMX-23 onto soybean seeds ( Glycine max L.) with NaCl at 50, 100, or 154 mmol/L increased the seed germination rate by 14, 21, and 30 %, respectively. THIA at 10 mg/L had beneficial effects on E . adhaerens TMX-23, enhancing growth of the bacterium and its production of salicylic acid, an important plant phytohormone associated with plant defense responses against abiotic stress. The nitrogen-fixing and plant-growth-promoting rhizobacterium E. adhaerens TMX-23, which is able to degrade THIA, has the potential for bioaugmentation as well as to promote growth of field crops in THIA-contaminated soil.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-012-4638-3