PKDIP: Efficient Public-Key-Based Data Integrity Protection for Wireless Image Sensors

Due to limited energy of “wireless image sensors (WISs),” existing data integrity protection mechanisms typically employ a hash-function-based signing algorithm to generate “message authentication codes (MACs)” for long image frames. However, hash-function-based signing algorithm requires the WIS an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2015-01, Vol.2015 (2015), p.1-9
Hauptverfasser: Wan, Changsheng, Huang, Jie, Zhang, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to limited energy of “wireless image sensors (WISs),” existing data integrity protection mechanisms typically employ a hash-function-based signing algorithm to generate “message authentication codes (MACs)” for long image frames. However, hash-function-based signing algorithm requires the WIS and the “end user (EU)” sharing a secret, which leads to a new security issue: Once the EU becomes malicious due to some reasons, it will be able to forge the WIS’s data since it holds the shared secret. Therefore, public-key cryptography is desirable. Unfortunately, public-key cryptographic operations are quite time-consuming for energy-restrained WISs. Facing this dilemma, we present a novel data integrity protection protocol named PKDIP in this paper. Similar to the mechanisms of this field, PKDIP generates MACs for data integrity protection. However, different from other well-known approaches, PKDIP introduces the “Montgomery Modular Multiplication (MontMM)” technique to current public-key-based signing algorithms. Since MontMM is much more efficient than hash functions, PKDIP can reduce the signing cost significantly. Experimental results show PKDIP can even be more efficient than hash-function-based schemes.
ISSN:1687-725X
1687-7268
DOI:10.1155/2015/570185