DIRECTLY FINITE ALGEBRAS OF PSEUDOFUNCTIONS ON LOCALLY COMPACT GROUPS
An algebra A is said to be directly finite if each left-invertible element in the (conditional) unitization of A is right invertible. We show that the reduced group C*-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the correspondi...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2015-09, Vol.57 (3), p.693-707 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An algebra A is said to be directly finite if each left-invertible element in the (conditional) unitization of A is right invertible. We show that the reduced group C*-algebra of a unimodular group is directly finite, extending known results for the discrete case. We also investigate the corresponding problem for algebras of p-pseudofunctions, showing that these algebras are directly finite if G is amenable and unimodular, or unimodular with the Kunze–Stein property. An exposition is also given of how existing results from the literature imply that L1(G) is not directly finite when G is the affine group of either the real or complex line. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089514000573 |