Experimental measurements of ion cyclotron range of frequency minority-heated fast-ion distributions on Alcator C-Mod
Ion cyclotron resonance heating is the primary auxiliary heating on the Alcator C-Mod tokamak and is commonly used on other devices, and is planned for use on ITER. The RF-power density on C-Mod is above 5 MW m−3 providing for a unique opportunity to study wave-particle effects in the high RF power...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2012-09, Vol.52 (9), p.94019-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ion cyclotron resonance heating is the primary auxiliary heating on the Alcator C-Mod tokamak and is commonly used on other devices, and is planned for use on ITER. The RF-power density on C-Mod is above 5 MW m−3 providing for a unique opportunity to study wave-particle effects in the high RF power per particle regime. Minority heating produces a highly energetic tail in the minority distribution function which is measured using a compact neutral particle analyser. In this paper, we present the measurements of the fast-ion spectrum between 200 and 2 MeV, compiled over an entire experimental campaign. We also estimate the effective tail temperatures for the fast-ion distribution. We find that the fast-ion distribution is less energetic and less dense with increasing electron density; is more energetic with increasing plasma current; and is more dense but has no measurable change in energy with increasing RF power. Some possible explanations for these findings are discussed. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/0029-5515/52/9/094019 |