Deformation behavior of micro-indentation defects under uniaxial and biaxial loads

The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2015-09, Vol.86 (9), p.095112-095112
Hauptverfasser: Ma, Zhichao, Zhao, Hongwei, Lu, Shuai, Li, Hailian, Liu, Changyi, Liu, Xianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4931579