Electronic promoter or reacting species? The role of LiNH2 on Ru in catalyzing NH3 decomposition

LiNH2 decomposes to NH3 rather than N2 and H2 because of a severe kinetic barrier in NHx (x = 1, 2) coupling. In the presence of Ru, however, a drastic enhancement in N2 and H2 formation is obtained, which enables the LiNH2-Ru composite to act as a highly active catalyst for NH3 decomposition. Exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2015-10, Vol.51 (82), p.15161
Hauptverfasser: Guo, Jianping, Chen, Zheng, Wu, Anan, Chang, Fei, Wang, Peikun, Hu, Daqiang, Wu, Guotao, Xiong, Zhitao, Yu, Pei, Chen, Ping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LiNH2 decomposes to NH3 rather than N2 and H2 because of a severe kinetic barrier in NHx (x = 1, 2) coupling. In the presence of Ru, however, a drastic enhancement in N2 and H2 formation is obtained, which enables the LiNH2-Ru composite to act as a highly active catalyst for NH3 decomposition. Experimental and theoretical investigations indicate that Li creates a NHx-rich environment and Ru mediates the electron transfer facilitating NHx coupling. A strategy in catalytic material design is thus proposed.
ISSN:1364-548X
1364-548X
DOI:10.1039/c5cc04645a