Non-invasive positive pressure ventilation for prevention of complications after pulmonary resection in lung cancer patients

Pulmonary complications are often observed during the postoperative period of lung resection for patients with lung cancer. Some conditions such as intubation, a long stay in the intensive care unit, the high cost of antibiotics and mortality may be avoided with the prevention of postoperative pulmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cochrane database of systematic reviews 2015-09 (9), p.CD010355-CD010355
Hauptverfasser: Torres, Maria F S, Porfirio, Gustavo J M, Carvalho, Alan P V, Riera, Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary complications are often observed during the postoperative period of lung resection for patients with lung cancer. Some conditions such as intubation, a long stay in the intensive care unit, the high cost of antibiotics and mortality may be avoided with the prevention of postoperative pulmonary complications. Non-invasive positive pressure ventilation (NIPPV) is widely accepted and often used in hospitals, and may reduce the number of pulmonary complications and mortality after this type of surgery. Therefore, a systematic review is required to map and critically assess the benefits and harms of NIPPV for patients undergoing lung resection. To assess the efficacy and safety of NIPPV for preventing complications in patients who underwent pulmonary resection for lung cancer. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS and PEDro, to identify potentially eligible trials. We did not use any date or language restrictions in the electronic searches. The databases were last searched on 17 March 2015. We searched the reference lists of relevant papers and contacted experts in the field for information about additional published and unpublished studies. We also searched the Register of Controlled Trials (www.controlled-trials.com) and ClinicalTrials.gov (clinicaltrials.gov) to identify ongoing studies. We considered randomised or quasi-randomised clinical trials that compared NIPPV in the immediate postoperative period after pulmonary resection with no intervention or conventional respiratory therapy. Two authors collected data and assessed trial risk of bias. Where possible, we pooled data from the individual studies using a fixed-effect model (quantitative synthesis), but where this was not possible we tabulated or presented the data in the main text (qualitative synthesis). Where substantial heterogeneity existed, we applied a random-effects model. Of the 155 references retrieved from searches, 6 randomised clinical trials (RCTs) and 1 quasi-randomised trial fulfilled the eligibility criteria for this review, including a total of 436 patients. Five studies described quantitative measures of pulmonary complications, with pooled data showing no difference between NIPPV compared with no intervention (RR 1.03; 95% CI 0.72 to 1.47). Three studies reported intubation rates and there was no significant difference between the intervention and control groups (RR 0.55; 95% CI 0.25 to 1.20). Five studies reporte
ISSN:1465-1858
1469-493X
1465-1858
DOI:10.1002/14651858.CD010355.pub2