Enhanced cyclooxygenase-2 expression in olfactory-limbic forebrain following kainate-induced seizures

Cyclooxygenase-2 is expressed at low levels in a subset of neurons in CNS and is rapidly induced by a multiplicity of factors including seizure activity. A putative relationship exists between cyclooxygenase-2 induction and glutamatergic neurotransmission. Cyclooxygenase-1 is constitutively expresse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2006-01, Vol.140 (3), p.1051-1065
Hauptverfasser: Joseph, S.A., Lynd-Balta, E., O’Banion, M.K., Rappold, P.M., Daschner, J., Allen, A., Padowski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyclooxygenase-2 is expressed at low levels in a subset of neurons in CNS and is rapidly induced by a multiplicity of factors including seizure activity. A putative relationship exists between cyclooxygenase-2 induction and glutamatergic neurotransmission. Cyclooxygenase-1 is constitutively expressed in glial cells and has been specifically linked to microglia. In this study we evaluated cyclooxygenase-2 protein immunocytochemically and found markedly enhanced immunostaining primarily in olfactory-limbic regions at 2, 6 and 24 h following kainate-induced status epilepticus. Impressive enhanced cyclooxygenase-2 immunoreactivity was localized in anterior olfactory nucleus, tenia tecta, nucleus of the lateral olfactory tract, piriform cortex, lateral and basolateral amygdala, orbital frontal cortex, nucleus accumbens (shell) and associated areas of ventral striatum, entorhinal cortex, dentate gyrus granule cells and hilar neurons, hippocampal CA subfields and subiculum. Alternate sections were processed for dual immunocytochemical analysis utilizing c-Fos and cyclooxygenase-2 antiserum to examine the possibility that the neuronal induction of cyclooxygenase-2 was associated with seizure activity. Neurons that showed a timeline of cyclooxygenase-2 upregulation were found to possess c-Fos immunopositive nuclei. Additional results from all seizure groups showed cyclooxygenase-1 induction in microglia, which was confirmed by Western blot analysis of hippocampus. Western blot and real-time quantitative RT-PCR analysis showed significant upregulation of cyclooxygenase-2 expression, confirming its induction in neurons. These data indicate that cyclooxygenase-2 induction in a neuronal network can be a useful marker for pathways associated with seizure activity.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2006.02.075