Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation

CbbR is a LysR-type transcriptional regulator that activates expression of the operons containing (cbb) genes that encode the CO2 fixation pathway enzymes in Ralstonia eutropha (Cupriavidus necator) under autotrophic growth conditions. The cbb operons are stringently downregulated during chemohetero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2015-09, Vol.161 (9), p.1816-1829
Hauptverfasser: Dangel, Andrew W, Tabita, F Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CbbR is a LysR-type transcriptional regulator that activates expression of the operons containing (cbb) genes that encode the CO2 fixation pathway enzymes in Ralstonia eutropha (Cupriavidus necator) under autotrophic growth conditions. The cbb operons are stringently downregulated during chemoheterotrophic growth on organic acids such as malate. CbbR constitutive proteins (CbbR*s), typically with single amino acid substitutions, were selected and isolated that activate expression of the cbb operons under chemoheterotrophic growth conditions. A large set of CbbR*s from all major domains of the CbbR molecule were identified, except for the DNA-binding domain. The level of gene expression conferred for many of these CbbR*s under autotrophic growth was greater than that conferred by wild-type CbbR. Several of these CbbR*s increase transcription two- to threefold more than wild-type CbbR. One particular CbbR*, a truncated protein, was useful in identifying the regions of CbbR that are necessary for transcriptional activation and, by logical extension, necessary for interaction with RNA polymerase. The reductive assimilation of carbon via CO2 fixation is an important step in the cost-effective production of useful biological compounds. Enhancing CO2 fixation in Ralstonia eutropha through greater transcriptional activation of the cbb operons could prove advantageous, and the use of CbbR*s is one way to enhance product formation.
ISSN:1350-0872
1465-2080
DOI:10.1099/mic.0.000131