Semi-Transparent ZnO-CuI/CuSCN Photodiode Detector with Narrow-Band UV Photoresponse
The ZnO homogeneous pn junction photodiode is quite difficult to fabricate due to the absence of stable p-type ZnO. So exploring reliable p-type materials is necessary to build a heterogeneous pn junction with n-type ZnO. Herein, we develop a simple and low-cost solution-processed method to obtain i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-09, Vol.7 (38), p.21235-21244 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ZnO homogeneous pn junction photodiode is quite difficult to fabricate due to the absence of stable p-type ZnO. So exploring reliable p-type materials is necessary to build a heterogeneous pn junction with n-type ZnO. Herein, we develop a simple and low-cost solution-processed method to obtain inorganic p-type CuI/CuSCN composite film with compact morphology, high conductivity, and low surface state. The improved performance of CuI/CuSCN composite film can be confirmed based on high-rectification ratio, responsivity, and open voltage of ZnO-CuI/CuSCN photodiode UV detectors. Moreover, photodiodes with novel top electrodes are investigated. Compared with commonly used Au and graphene/Ag nanowire (NWs) electrode, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) electrode prepared by Meyer rod-coating technique opens one route to obtain a semitransparent photodiode. The photodiode with PEDOT:PSS as the top electrode under reverse illumination has the highest photocurrent density due to higher UV transmittance of PEDOT:PSS transparent electrode compared with ITO glass. The low-energy consumption, and high responsivity, UV to visible rejection ratio and air stability make this ZnO-CuI/CuSCN photodiode quite promising in the UV-A detection field. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b05222 |