Microchannel Wetting for Controllable Patterning and Alignment of Silver Nanowire with High Resolution
Patterning and alignment of conductive nanowires are essential for good electrical isolation and high conductivity in various applications. Herein a facile bottom-up, additive technique is developed to pattern and align silver nanowires (AgNWs) by manipulating wetting of dispersions in microchannels...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-09, Vol.7 (38), p.21433-21441 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patterning and alignment of conductive nanowires are essential for good electrical isolation and high conductivity in various applications. Herein a facile bottom-up, additive technique is developed to pattern and align silver nanowires (AgNWs) by manipulating wetting of dispersions in microchannels. By forming hydrophobic/hydrophilic micropatterns down to 8 μm with fluoropolymer (Cytop) and SiO2, the aqueous AgNW dispersions with the optimized surface tension and viscosity self-assemble into microdroplets and then dry to form anisotropic AgNW networks. The alignment degree characterized by the full width at half-maximum (FWHM) can be well-controlled from 39.8° to 84.1° by changing the width of microchannels. A mechanism is proposed and validated by statistical analysis on AgNW alignment, and a static model is proposed to guide the patterning of general NWs. The alignment reduced well the electrical resistivity of AgNW networks by a factor of 5 because of the formation of efficient percolation path for carrier conduction. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b06370 |