Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core–Shell Nanofibrous Membranes

The presence of both osteoconductive and osteoinductive factors is important in promoting stem cell differentiation toward the osteogenic lineage. In this study, we prepared silk fibroin/chitosan/nanohydroxyapatite/bone morphogenetic protein-2 (SF/CS/nHAP/BMP-2, SCHB2) nanofibrous membranes (NFMs) b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-09, Vol.7 (38), p.21170-21181
Hauptverfasser: Shalumon, K. T, Lai, Guo-Jyun, Chen, Chih-Hao, Chen, Jyh-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of both osteoconductive and osteoinductive factors is important in promoting stem cell differentiation toward the osteogenic lineage. In this study, we prepared silk fibroin/chitosan/nanohydroxyapatite/bone morphogenetic protein-2 (SF/CS/nHAP/BMP-2, SCHB2) nanofibrous membranes (NFMs) by incorporating BMP-2 in the core and SF/CS/nHAP as the shell layer of a nanofiber with two different shell thicknesses (SCHB2-thick and SCHB-thin). The physicochemical properties of SCHB2 membranes were characterized and compared with those of SF/CS and SF/CS/nHAP NFMs. When tested in release studies, the release rate of BMP-2 and the concentration of BMP-2 in the release medium were higher for SCHB2-thin NFMs because of reduced shell thickness. The BMP-2 released from the nanofiber retained its osteoinductive activity toward human-bone-marrow-derived mesenchymal stem cells (hMSCs). Compared with SF/CS and SF/CS/nHAP NFMs, the incorporation of BMP-2-promoted osteogenic differentiation of hMSCs and the SCHB-thin NFM is the best scaffold during in vitro cell culture. Gene expression analysis by real-time quantitative polymerase chain reaction detected the evolution of both early and late marker genes of bone formation. The relative mRNA expression is in accordance with the effect of BMP-2 incorporation and shell thickness, while the same was reconfirmed through the quantification of bone marker protein osteocalcin. In vivo experiments were carried out by subcutaneously implanting hMSC-seeded SCHB2-thin NFMs and acellular controls on the back sides of nude mice. Immunohistochemical and histological staining confirmed ectopic bone formation and osteogenesis of hMSCs in SCHB2-thin NFMs. In conclusion, the SCHB2-thin NFM could be suggested as a promising scaffold for bone tissue engineering.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.5b04962