SPECIAL ISSUE: Transcriptional response to the neuroleptic-like compound Ampullosporin A in the rat ketamine model
Psychotic disorders affecting up to 1% of the human population represent pathological changes to the metabolic homeostasis of the brain. Increasing evidence in the literature suggests complex biochemical and/or transcriptional alterations accompanying schizophrenia-like phenomena. Sub-chronic treatm...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2006-04, Vol.97 (s1), p.74-81 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Psychotic disorders affecting up to 1% of the human population represent pathological changes to the metabolic homeostasis of the brain. Increasing evidence in the literature suggests complex biochemical and/or transcriptional alterations accompanying schizophrenia-like phenomena. Sub-chronic treatment with sub-anaesthetic doses of ketamine induces schizophrenia-related psychotic alterations that can be used as an animal model in the study of this disorder. Ampullosporin A belongs to a specific group of pore-forming fungal peptides, peptaibols. We focused on the analysis of molecular events occurring in the brain of ketamine-pre-treated rats after administration of Ampullosporin A with neuroleptic-like activity. The complex experimental approach allowed us to correlate the use of low molecular weight substances with a transcriptome fingerprint in the prefrontal cortex. We found 63 genes to be up-regulated and 22 genes suppressed, with transthyretin, syndecan-1 and NeuroD1 showing the highest degree of up-regulation. Our results suggest the possibility that Ampullosporin A belongs to the group of neuroleptic-like compounds, inducing massive changes in neurotransmitter receptor composition, calcium signalling cascades and second messenger systems, and leading to the plastic reorganization of brain tissue, metabolic pathways and synapses. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1111/j.1471-4159.2005.03621.x |