Short Report: Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels
It is assumed that the combined effects of multiple common genetic variants explain a large part of variation of high-density lipoprotein cholesterol (HDL-C) plasma levels, but little evidence exists to corroborate this assumption. It was our objective to study the contribution of multiple common ge...
Gespeichert in:
Veröffentlicht in: | Clinical genetics 2006-03, Vol.69 (3), p.263-270 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is assumed that the combined effects of multiple common genetic variants explain a large part of variation of high-density lipoprotein cholesterol (HDL-C) plasma levels, but little evidence exists to corroborate this assumption. It was our objective to study the contribution of multiple common genetic variants of HDL-C-related genes to variation of HDL-C plasma levels. A well-characterized cohort of 546 Caucasian men with documented coronary artery disease was genotyped for common functional variants in genes that control reverse cholesterol transport: ATP-binding cassette transporter A1, apolipoprotein A-I and apolipoprotein-E, cholesteryl ester transfer protein, hepatic lipase, lecithin : cholesterol-acyl transferase, lipoprotein lipase, and scavenger receptor class B type 1. Multivariate linear regression showed that these variants, in conjunction, explain 12.4% (95% confidence interval: 6.9-17.9%) of variation in HDL-C plasma levels. When the covariates smoking and body mass index were taken into account, the explained variation increased to 15.3% (9.4-21.2%), and when 10 two-way interactions were incorporated, this percentage rose to 25.2% (18.9-31.5%). This study supports the hypothesis that multiple, mildly penetrant, but highly prevalent genetic variants explain part of the variation of HDL-C plasma levels, albeit to a very modest extent. Multiple environmental and genetic influences on HDL-C plasma levels still have to be elucidated.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0009-9163 1399-0004 |
DOI: | 10.1111/j.1399-0004.2006.00578.x |