The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability

PREMISE OF THE STUDY: Shade tolerance is a key trait promoting invasive plant performance in forest interiors. Rosa multiflora is a problematic invasive shrub in the northeastern United States, occurring in edge habitats and encroaching into forests. Our objective was to evaluate the shade tolerance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2015-08, Vol.102 (8), p.1323-1331
Hauptverfasser: Dlugos, Daniel M., Collins, Hilary, Bartelme, Elise M., Drenovsky, Rebecca E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PREMISE OF THE STUDY: Shade tolerance is a key trait promoting invasive plant performance in forest interiors. Rosa multiflora is a problematic invasive shrub in the northeastern United States, occurring in edge habitats and encroaching into forests. Our objective was to evaluate the shade tolerance of R. multiflora to assess how ecophysiological traits may facilitate its spread into forest interiors. METHODS: In the field, we documented shrub and seed bank density, fecundity, phenology, and seasonal photosynthetic rates of R. multiflora in contrasting light environments. In the greenhouse, we exposed seedlings to simulated canopy treatments by altering spectral quantity and quality, mimicking habitats ranging from open fields to forest interiors. KEY RESULTS: In the field, shrub density and fecundity of R. multiflora sharply increased with light availability. However, no differences were observed between forest edge and interior seed banks. Rosa multiflora initiated leaf growth earlier and retained leaves longer than canopy vegetation and tended to have higher photosynthetic rates in spring and fall. In the greenhouse, plants displayed shade-avoidance traits, decreasing relative growth rate and reducing branching, while increasing elongation and showing no change in light response curve parameters. CONCLUSIONS: In deciduous forest understories, R. multiflora appears to make use of a lengthened growing season in spring and fall, and therefore, substantial growth and spread through intact forests appears dependent on canopy gaps. Management should focus on reducing edge populations to reduce spread into the interior and on monitoring newly created canopy gaps.
ISSN:0002-9122
1537-2197
DOI:10.3732/ajb.1500115