Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum)
Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD...
Gespeichert in:
Veröffentlicht in: | Plant and cell physiology 2015-08, Vol.56 (8), p.1533-1545 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits. In this study, we generated transgenic tomato plants in which each SlGAD was suppressed and those in which all three SlGADs were simultaneously suppressed. A significant decrease in GABA levels, i.e. 50-81% compared with wild-type (WT) levels, was observed in mature green (MG) fruits of the SlGAD2-suppressed lines, while a more drastic reduction (up to |
---|---|
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pcv075 |