In Silico Identification of Protein S‑Palmitoylation Sites and Their Involvement in Human Inherited Disease

S-Palmitoylation is a key regulatory mechanism controlling protein targeting, localization, stability, and activity. Since increasing evidence shows that its disruption is implicated in many human diseases, the identification of palmitoylation sites is attracting more attention. However, the computa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2015-09, Vol.55 (9), p.2015-2025
Hauptverfasser: Li, Shuyan, Li, Jiazhong, Ning, Lulu, Wang, Shaopeng, Niu, Yuzhen, Jin, Nengzhi, Yao, Xiaojun, Liu, Huanxiang, Xi, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:S-Palmitoylation is a key regulatory mechanism controlling protein targeting, localization, stability, and activity. Since increasing evidence shows that its disruption is implicated in many human diseases, the identification of palmitoylation sites is attracting more attention. However, the computational methods that are published so far for this purpose have suffered from a poor balance of sensitivity and specificity; hence, it is difficult to get a good generalized prediction ability on an external validation set, which holds back the further analysis of associations between disruption of palmitoylation and human inherited diseases. In this work, we present a reliable identification method for protein S-palmitoylation sites, called SeqPalm, based on a series of newly composed features from protein sequences and the synthetic minority oversampling technique. With only 16 extracted key features, this approach achieves the most favorable prediction performance up to now with sensitivity, specificity, and Matthew’s correlation coefficient values of 95.4%, 96.3%, and 0.917, respectively. Then, all known disease-associated variations are studied by SeqPalm. It is found that 243 potential loss or gain of palmitoylation sites are highly associated with human inherited disease. The analysis presents several potential therapeutic targets for inherited diseases associated with loss or gain of palmitoylation function. There are even biological evidence that are coordinate with our prediction results. Therefore, this work presents a novel approach to discover the molecular basis of pathogenesis associated with abnormal palmitoylation. SeqPalm is now available online at http://lishuyan.lzu.edu.cn/seqpalm, which can not only annotate the palmitoylation sites of proteins but also distinguish loss or gain of palmitoylation sites by protein variations.
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.5b00276