Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers

Super-resolution microscopy by microspheres emerged as a simple and broadband imaging technique; however, the mechanisms of imaging are debated in the literature. Furthermore, the resolution values were estimated based on semi-quantitative criteria. The primary goals of this work are threefold: i) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-09, Vol.23 (19), p.24484-24496
Hauptverfasser: Allen, Kenneth W, Farahi, Navid, Li, Yangcheng, Limberopoulos, Nicholaos I, Walker, Jr, Dennis E, Urbas, Augustine M, Astratov, Vasily N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Super-resolution microscopy by microspheres emerged as a simple and broadband imaging technique; however, the mechanisms of imaging are debated in the literature. Furthermore, the resolution values were estimated based on semi-quantitative criteria. The primary goals of this work are threefold: i) to quantify the spatial resolution provided by this method, ii) to compare the resolution of nanoplasmonic structures formed by different metals, and iii) to understand the imaging provided by microfibers. To this end, arrays of Au and Al nanoplasmonic dimers with very similar geometry were imaged using confocal laser scanning microscopy at λ = 405 nm through high-index (n~1.9-2.2) liquid-immersed BaTiO microspheres and through etched silica microfibers. We developed a treatment of super-resolved images in label-free microscopy based on using point-spread functions with subdiffraction-limited widths. It is applicable to objects with arbitrary shapes and can be viewed as an integral form of the super-resolution quantification widely accepted in fluorescent microscopy. In the case of imaging through microspheres, the resolution ~λ/6-λ/7 is demonstrated for Au and Al nanoplasmonic arrays. In the case of imaging through microfibers, the resolution ~λ/6 with magnification M~2.1 is demonstrated in the direction perpendicular to the fiber with hundreds of times larger field-of-view in comparison to microspheres.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.024484