Hyaluronidase-incorporated hyaluronic acid–tyramine hydrogels for the sustained release of trastuzumab

We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid–tyramine (HA–Tyr) conjugates through the enzymatic crosslinking utili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2015-10, Vol.216, p.47-55
Hauptverfasser: Xu, Keming, Lee, Fan, Gao, Shujun, Tan, Min-Han, Kurisawa, Motoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid–tyramine (HA–Tyr) conjugates through the enzymatic crosslinking utilizing hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Through electrostatic interactions with the HA, trastuzumab was retained in the hydrogel to minimize its burst release. Hyaluronidase was incorporated in the hydrogel to release trastuzumab from the hydrogels. The hydrogels were degraded and showed sustained release of trastuzumab in phosphate buffer over four weeks in vitro. Both the rates of drug release and gel degradation were controlled by the concentration of hyaluronidase. Trastuzumab released from the hydrogels inhibited the proliferation of BT-474 cells in vitro. In an animal model, the single subcutaneous injection of a mixture solution of HA–Tyr conjugates, H2O2, HRP, trastuzumab and hyaluronidase inhibited tumor growth significantly, whereas injection of trastuzumab alone at the same dose failed to do so. Compared to trastuzumab alone, the hyaluronidase-incorporated HA–Tyr hydrogels improved the pharmacokinetic profile of trastuzumab in the plasma of mice. Furthermore, they were fully degraded over two weeks, and the formation of fibrous capsules was not observed in mice. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2015.08.015