A Climatological Monsoon Break in Rainfall over Indochina—A Singularity in the Seasonal March of the Asian Summer Monsoon
This study investigated the climatological pentad mean annual cycle of rainfall in Thailand and the associated atmospheric circulation fields. The data used included two different data of rainfall: rain gauge data for Thailand from the Thai Meteorological Department and satellite-derived rainfall da...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2006-04, Vol.19 (8), p.1545-1556 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the climatological pentad mean annual cycle of rainfall in Thailand and the associated atmospheric circulation fields. The data used included two different data of rainfall: rain gauge data for Thailand from the Thai Meteorological Department and satellite-derived rainfall data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP).
Climatological mean pentad values of rainfall taken over 50 yr clearly show a distinct climatological monsoon break (CMB) occurring over Thailand in late June. The occurrence of the CMB coincides with a drastic change of large-scale monsoon circulation in the seasonal march. The CMB is a significant singularity in the seasonal march of the Southeast Asia monsoon, which divides the rainy season into the early monsoon and the later monsoon over the Indochina Peninsula.
A quasi-stationary ridge dynamically induced by the north–south-oriented mountain range in Indochina is likely to cause the CMB. The formation of the strong ridge over the mountain ranges of Indochina is preceded by a sudden enhancement (northward expansion) of the upstream monsoon westerlies along a latitudinal band between 15° and 20°N in late June. The CMB also has an impact downstream. The orographically induced stationary Rossby waves enhance the cyclonic circulation to the lee of Indochina, and over the South China Sea. The enhancement of cyclonic circulation may be responsible for the summer monsoon rains peaking in late June over the South China Sea and the western North Pacific, and in the baiu front. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli3724.1 |