Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis

The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement (C) dependent haemolysis. The aim of this study was to characterise the toxins in the venom responsible for the different biological effects. We have previously shown that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1998-10, Vol.251 (1), p.366-373
Hauptverfasser: Tambourgi, D.V. (Instituto Butantan, Sao Paulo, Brazil.), Magnoli, F.C, Berg, C.W. van den, Morgan, B.P, Araujo, P.S. de, Alves, E.W, Silva, W.D. da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement (C) dependent haemolysis. The aim of this study was to characterise the toxins in the venom responsible for the different biological effects. We have previously shown that a 35 kDa protein, named F35, purified from Loxosceles intermedia venom, incorporates into the membranes of human erythrocytes and renders them susceptible to the alternative pathway of autologous C. Here we have further purified the F35 protein which was resolved by reversed phase chromatography into three tightly contiguous peaks termed P1, P2, and P3. P1 and P2 were shown to be homogeneous by SDS-PAGE and N-terminal aminoacid analysis, while P3 consisted of two highly homologous proteins. N-terminal sequencing of all four proteins showed a high degree of homology, which was confirmed by cross-reactivity of antisera raised against the individual purified proteins. Functional characterisation of P1 and P2 indicated the presence of sphingomyelinase activity and either protein in isolation was capable of inducing all the in vivo effects seen with whole spider venom, including C-dependent haemolysis and dermonecrosis. In all assays, P2 was more active than P1, while P3 was completely inactive. These data show that different biological effects of L. intermedia venom can be assigned to the sphingomyelinase activity of two highly homologous proteins, P1 and P2. Identification of these proteins as inducers of the principal pathological effects induced by whole venom will aid studies of the mechanism of action of the venom and the development of a effective therapy.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1998.9474