Exciton Energy and Charge Transfer in Porphyrin Aggregate/Semiconductor (TiO2) Composites
A porphyrin aggregate is reported that exhibits novel exciton state properties for light-harvesting applications. This porphyrin aggregate enables control of energy dissipation of coherent excited states by changing the self-assembly pattern. New exciton spectral features create a new route of energ...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2012-07, Vol.3 (14), p.1877-1884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A porphyrin aggregate is reported that exhibits novel exciton state properties for light-harvesting applications. This porphyrin aggregate enables control of energy dissipation of coherent excited states by changing the self-assembly pattern. New exciton spectral features create a new route of energy transfer in this porphyrin aggregate. The kinetic model of exciton state decay is addressed in this Perspective by reporting steady-state and transient emission and absorption studies of porphyrin J- and H-aggregates. The porphyrin J-aggregate emerges with better spectral coverage and exciton dynamics, which are suitable for light-harvesting antenna functions. This motif is explored in a photosensitization study of TiO2 semiconductor materials. The transient absorption studies show that the J-aggregate improves the photoinduced charge separation at the porphyrin/TiO2 interface. The higher charge separation is attributed to exciton-coupled charge-transfer processes in porphyrin J-aggregate/TiO2 hybrid materials. It represents the potential of porphyrin aggregates in biomimetic artificial antenna activity. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz300639q |