New Synthesis Route and Magnetic Structure of Tm2Mn2O7 Pyrochlore

In this work, we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, which a compound that is thermodynamically unstable at ambient pressure. Differently from the reported in the past high-pressure synthesis of the same compound applying oxides as starting materials, we have obtained a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2015-09, Vol.54 (18), p.9092-9097
Hauptverfasser: Pomjakushina, Ekaterina, Pomjakushin, Vladimir, Rolfs, Katharina, Karpinski, Janusz, Conder, Kazimierz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, which a compound that is thermodynamically unstable at ambient pressure. Differently from the reported in the past high-pressure synthesis of the same compound applying oxides as starting materials, we have obtained a pure Tm2Mn2O7 phase by a converting TmMnO3 at 1100 °C and an oxygen pressure of 1300 bar. The studies of Tm2Mn2O7 performed by a high-resolution neutron powder diffraction have shown that a pure pyrochlore cubic phase Tm2Mn2O7 (space group Fd3¯m) have been obtained. Upon cooling below 25 K, there is a transition to a ferromagnetically (FM) ordered phase observed with an additional antiferromagnetic (AFM) canting, suggesting a lowering of the initial cubic crystal symmetry. The magnetic transition is accompanied by a small but very visible magnetostriction effect. Using symmetry analysis, we have found a solution for the AFM structure in the maximal Shubnikov subgroup I41/am′d′.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.5b01498