NORMALIZED UNIT HYDROGRAPH AGGREGATION
The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms...
Gespeichert in:
Veröffentlicht in: | Journal of the American Water Resources Association 1998-10, Vol.34 (5), p.1221-1228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms produce different unit hydrographs for a single watershed. Consequently, a design engineer usually develops a composite, or average, unit hydrograph based on several recorded storm events. Common methods for estimating this composite unit hydrograph include curve fitting, simple aggregation, and multistorm optimization techniques. This paper introduces a new method to perform aggregation of unit hydrographs. The method is an extension to the simple averaging technique, in which prior to averaging, the individual unit hydrograph time ordinates are normalized with respect to the average time to peak. The normalization method is compared to a simple averaging technique and two multistorm aggregation techniques at six rural watersheds in Alabama. The results indicate that on average the normalization method predicts runoff nearly as accurately as the multistorm techniques, and displays improvement for 60 percent of the storms tested when compared with the simple averaging technique. |
---|---|
ISSN: | 1093-474X 0043-1370 1752-1688 |
DOI: | 10.1111/j.1752-1688.1998.tb04167.x |