Mitochondrial dynamics regulating chemoresistance in gynecological cancers

Chemoresistance enables cancer cells to evade apoptotic stimuli and leads to poor clinical prognosis. It arises from dysregulation of signaling factors responsible for inducing cell proliferation and death and for modulating the microenvironment. In gynecologic cancers, p53 is a pivotal determinant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2015-09, Vol.1350 (1), p.1-16
Hauptverfasser: Kong, Bao, Tsuyoshi, Hideaki, Orisaka, Makoto, Shieh, Dar-Bin, Yoshida, Yoshio, Tsang, Benjamin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemoresistance enables cancer cells to evade apoptotic stimuli and leads to poor clinical prognosis. It arises from dysregulation of signaling factors responsible for inducing cell proliferation and death and for modulating the microenvironment. In gynecologic cancers, p53 is a pivotal determinant of cisplatin sensitivity, while BCL‐2 family members are associated with taxane sensitivity. Mitochondria fusion and fission dynamics are required for many mitochondrial functions and are also involved in mitochondria‐mediated apoptosis, which is closely associated with chemosensitivity. Mitochondrial dynamics are controlled by a number of intracellular proteins, including fusion (Opa1 and mitofusion 1 and 2) and fission proteins (Drp1 and Fis1), which can be proapoptotic or antiapoptotic, depending on the cell types, status, and stimuli from the microenvironment. This paper describes the role of mitochondrial dynamics in the mechanism of chemoresistance and the evidence supporting a significant contribution of a hyperfusion state to chemoresistance in gynecological cancers. Moreover, we discuss our findings showing that enforced fission induces apoptosis of cancer cells and sensitizes them to chemotherapeutic agents. Understanding the regulation of mitochondrial dynamics in chemoresistance may provide insight into new biomarkers that better predict cancer chemosensitivity and may aid the development of effective therapeutic strategies for clinical management of gynecologic cancers.
ISSN:0077-8923
1749-6632
DOI:10.1111/nyas.12883