Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota

Data from a string of instrumented wells located on an upland of 55 m width between two wetlands in central North Dakota, USA, indicated frequent changes in water-table configuration following wet and dry periods during 5 years of investigation. A seasonal wetland is situated about 1.5 m higher than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 1997-04, Vol.191 (1), p.266-289
Hauptverfasser: Rosenberry, Donald O., Winter, Thomas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data from a string of instrumented wells located on an upland of 55 m width between two wetlands in central North Dakota, USA, indicated frequent changes in water-table configuration following wet and dry periods during 5 years of investigation. A seasonal wetland is situated about 1.5 m higher than a nearby semipermanent wetland, suggesting an average ground water-table gradient of 0.02. However, water had the potential to flow as ground water from the upper to the lower wetland during only a few instances. A water-table trough adjacent to the lower semipermanent wetland was the most common water-table configuration during the first 4 years of the study, but it is likely that severe drought during those years contributed to the longevity and extent of the water-table trough. Water-table mounds that formed in response to rainfall events caused reversals of direction of flow that frequently modified the more dominant water-table trough during the severe drought. Rapid and large water-table rise to near land surface in response to intense rainfall was aided by the thick capillary fringe. One of the wettest summers on record ended the severe drought during the last year of the study, and caused a larger-scale water-table mound to form between the two wetlands. The mound was short in duration because it was overwhelmed by rising stage of the higher seasonal wetland which spilled into the lower wetland. Evapotranspiration was responsible for generating the water-table trough that formed between the two wetlands. Estimation of evapotranspiration based on diurnal fluctuations in wells yielded rates that averaged 3–5 mm day −1. On many occasions water levels in wells closer to the semipermanent wetland indicated a direction of flow that was different from the direction indicated by water levels in wells farther from the wetland. Misinterpretation of direction and magnitude of gradients between ground water and wetlands could result from poorly placed or too few observation wells, and also from infrequent measurement of water levels in wells.
ISSN:0022-1694
1879-2707
DOI:10.1016/S0022-1694(96)03050-8