Synergistic Interactions between DMAG and Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitors in Bcr/abl super(+) Leukemia Cells Sensitive and Resistant to Imatinib Mesylate

PURPOSE: To characterize interactions between the heat shock protein 90 antagonist 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/2 inhibitor PD184352 in Bcr/abl super(+) leukemia cells sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2006-04, Vol.12 (7), p.2239-2247
Hauptverfasser: Nguyen, Tri K, Rahmani, Mohamed, Gao, Ning, Kramer, Lora, Corbin, Amie S, Druker, Brian J, Dent, Paul, Grant, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PURPOSE: To characterize interactions between the heat shock protein 90 antagonist 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/2 inhibitor PD184352 in Bcr/abl super(+) leukemia cells sensitive and resistant to imatinib mesylate. Experimental Design: K562 and LAMA 84 cells were exposed to varying concentrations of DMAG and PD184352 for 48 hours; after which, mitochondrial integrity, caspase activation, and apoptosis were monitored. Parallel studies were done in imatinib mesylate-resistant cells, including BaF3 cells transfected with plasmids encoding clinically relevant Bcr/abl mutations conferring imatinib mesylate resistance (e.g., E255K, M351T, and T315I) and primary CD34 super(+) bone marrow cells from patients refractory to imatinib mesylate. RESULTS: Cotreatment of Bcr/abl super(+) cells with minimally toxic concentrations of DMAG and PD184352 resulted in synergistic induction of mitochondrial injury (cytochrome c release and Bax conformational change), events associated with the pronounced and sustained inactivation of ERK1/2 accompanied by down-regulation of Bcl-x sub(L). Conversely, cells ectopically expressing Bcl-x sub(L) displayed significant protection against PD184352/DMAG-mediated lethality. This regimen effectively induced apoptosis in K562 cells overexpressing Bcr/abl, in BaF3 cells expressing various clinically relevant Bcr/abl mutations, and in primary CD34 super(+) cells from patients resistant to imatinib mesylate, but was relatively sparing of normal CD34 super(+) bone marrow cells. CONCLUSIONS: A regimen combining the heat shock protein 90 antagonist DMAG and the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor potently induces apoptosis in Bcr/abl super(+) cells, including those resistant to imatinib mesylate through various mechanisms including Bcr/abl kinase mutations, through a process that may involve sustained ERK1/2 inactivation and Bcl-x sub(L) down-regulation. This strategy warrants further attention in Bcr/abl super(+) hematopoietic malignancies, particularly those resistant to Bcr/abl kinase inhibitors.
ISSN:1078-0432