A TPS kernel for calculating survival vs. depth: distributions in a carbon radiotherapy beam, based on Katz's cellular Track Structure Theory

An algorithm was developed of a treatment planning system (TPS) kernel for carbon radiotherapy in which Katz's Track Structure Theory of cellular survival (TST) is applied as its radiobiology component. The physical beam model is based on available tabularised data, prepared by Monte Carlo simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2015-09, Vol.166 (1-4), p.347-350
Hauptverfasser: Waligórski, M P R, Grzanka, L, Korcyl, M, Olko, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm was developed of a treatment planning system (TPS) kernel for carbon radiotherapy in which Katz's Track Structure Theory of cellular survival (TST) is applied as its radiobiology component. The physical beam model is based on available tabularised data, prepared by Monte Carlo simulations of a set of pristine carbon beams of different input energies. An optimisation tool developed for this purpose is used to find the composition of pristine carbon beams of input energies and fluences which delivers a pre-selected depth-dose distribution profile over the spread-out Bragg peak (SOBP) region. Using an extrapolation algorithm, energy-fluence spectra of the primary carbon ions and of all their secondary fragments are obtained over regular steps of beam depths. To obtain survival vs. depth distributions, the TST calculation is applied to the energy-fluence spectra of the mixed field of primary ions and of their secondary products at the given beam depths. Katz's TST offers a unique analytical and quantitative prediction of cell survival in such mixed ion fields. By optimising the pristine beam composition to a published depth-dose profile over the SOBP region of a carbon beam and using TST model parameters representing the survival of CHO (Chinese Hamster Ovary) cells in vitro, it was possible to satisfactorily reproduce a published data set of CHO cell survival vs. depth measurements after carbon ion irradiation. The authors also show by a TST calculation that 'biological dose' is neither linear nor additive.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncv202