Influenza viruses with B/Yamagata- and B/Victoria-like neuraminidases are differentially affected by mutations that alter antiviral susceptibility
The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase muta...
Gespeichert in:
Veröffentlicht in: | Journal of antimicrobial chemotherapy 2015-07, Vol.70 (7), p.2004-2012 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase mutations in influenza B viruses that may further reduce NAI susceptibility, and to determine whether these mutations have the same effect in the two lineages of influenza B viruses that are currently circulating (B/Yamagata-like and B/Victoria-like).
We characterized the effect of 16 amino acid substitutions across five framework residues and four monomeric interface residues on the susceptibility to four different NAIs (oseltamivir, zanamivir, peramivir and laninamivir).
Framework residue mutations E117A and E117G conferred highly reduced inhibition to three of the four NAIs, but substantially reduced neuraminidase activity, whereas other framework mutations retained a greater level of NA activity. Mutations E105K, P139S and G140R of the monomeric interface were also found to cause highly reduced inhibition, but, interestingly, their effect was substantially greater in a B/Victoria-like neuraminidase than in a B/Yamagata-like neuraminidase, with some susceptibility values being up to 1000-fold different between lineages.
The frequency and the effect of key neuraminidase mutations on neuraminidase activity and NAI susceptibility can differ substantially between the two influenza B lineages. Therefore, future surveillance, analysis and interpretation of influenza B virus NAI susceptibility should consider the B lineage of the neuraminidase in the same manner as already occurs for different influenza A neuraminidase subtypes. |
---|---|
ISSN: | 0305-7453 1460-2091 |
DOI: | 10.1093/jac/dkv065 |