Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain

Tomato spotted wilt virus (TSWV) occurs worldwide and causes production losses in many important horticultural crops such as tomato and pepper. Breeding resistant cultivars has been the most successful method so far for TSWV disease control, but only two genes have been found to confer resistance ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2015-08, Vol.160 (8), p.2117-2123
Hauptverfasser: Debreczeni, Diana E, López, Carmelo, Aramburu, José, Darós, José Antonio, Soler, Salvador, Galipienso, Luis, Falk, Bryce W, Rubio, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tomato spotted wilt virus (TSWV) occurs worldwide and causes production losses in many important horticultural crops such as tomato and pepper. Breeding resistant cultivars has been the most successful method so far for TSWV disease control, but only two genes have been found to confer resistance against a wide spectrum of TSWV isolates: Sw-5 in tomato and Tsw in pepper. However, TSWV resistance-breaking isolates have emerged in different countries a few years after using resistant cultivars. In this paper, we report the first complete nucleotide sequences of three Spanish TSWV isolates with different biotypes according to their abilities to overcome resistance: LL-N.05 (wild type, WT), Pujol1TL3 (Sw-5 resistance breaking, SBR) and PVR (Tsw resistance-breaking, TBR). The genome of these TSWV isolates consisted of three segments: L (8913-8914 nt), M (4752-4825 nt) and (S 2924-2961 nt). Variations in nucleotide sequences and genomic RNA lengths among the different virus biotypes are reported here. Phylogenetic analysis of the five TSWV open reading frames showed evidence of reassortment between genomic segments of LL-N.05 and Pujol1TL3, which was supported by analysis with different recombination-detecting algorithms.
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-015-2453-8