Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7

Hepatitis C virus (HCV) is involved in the initiation and progression of liver fibrosis by regulating genes encoding host proteins. However, the underlying mechanism of HCV-induced liver fibrosis is still to be determined. Reverse transcription polymerase chain reaction (RT-PCR) and western blot wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2015-08, Vol.160 (8), p.2043-2050
Hauptverfasser: Zhu, Bin, Wei, Xiao-xia, Wang, Tian-bao, Zhou, Yan-cai, Liu, A-min, Zhang, Guang-wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatitis C virus (HCV) is involved in the initiation and progression of liver fibrosis by regulating genes encoding host proteins. However, the underlying mechanism of HCV-induced liver fibrosis is still to be determined. Reverse transcription polymerase chain reaction (RT-PCR) and western blot were performed to investigate the effect of HCV infection on the expression of the cellular microRNA miR-16 and its target genes encoding hepatocyte growth factor (HGF) and Smad7 in patients infected with HCV and in a liver cell line, QSG-7701, transfected with Ad-HCV, a recombinant adenovirus construct for expression of the HCV core protein. Regulation of HGF and Smad7 expression by miR-16 was assessed using luciferase reporter construct assays and miR-16 mimic transfection. Interferon-α (IFN-α) was used to verify the alteration of gene expression induced by HCV in QSG-7701 cells. Here, we found that miR-16 levels were increased in patients with HCV infection and were correlated with HGF and Smad7 expression levels in patients with HCV infection. Furthermore, HGF and Smad7 were predicted by bioinformatics analysis to be targets of miR-16. Upregulation of miR-16 and decreased HGF and Smad7 expression were still shown in QSG-7701 cells infected with Ad-HCV. Additionally, interferon-α (IFN-α) could reverse the changes in gene expression induced by HCV infection. These results suggest that the upregulation of miR-16 expression induced by HCV infection is a novel mechanism that contributes to downregulation of HGF and Smad7 in the development of liver fibrosis.
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-015-2474-3