Development of a new high-resolution intraoperative imaging system (dual-image videoangiography, DIVA) to simultaneously visualize light and near-infrared fluorescence images of indocyanine green angiography
Background Intraoperative indocyanine green videoangiography (ICG-VA) has been widely used in vascular surgery, where vessels are clearly shown as white on a black background. However, other structures cannot be observed during ICG-VA. We have developed a new, high-resolution intraoperative imaging...
Gespeichert in:
Veröffentlicht in: | Acta neurochirurgica 2015-09, Vol.157 (8), p.1295-1301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Intraoperative indocyanine green videoangiography (ICG-VA) has been widely used in vascular surgery, where vessels are clearly shown as white on a black background. However, other structures cannot be observed during ICG-VA. We have developed a new, high-resolution intraoperative imaging system (dual-image VA [DIVA]) to simultaneously visualize both light and near-infrared (NIR) fluorescence images from ICG-VA, allowing observation of other structures.
Methods
The operative field was illuminated via an operating microscope by halogen and xenon lamps with a filter to eliminate wavelengths over 780 nm. In the camera unit, visible light was filtered to 400–700 nm and NIR fluorescence emission light was filtered to 800–900 nm using a special sensor unit with an optical filter. Light and NIR fluorescence images were simultaneously visualized on a single monitor.
Results
Our system clearly visualized the operative field together with fluorescence-enhanced blood flow. In aneurysm surgeries, we could confirm incomplete clipping with the neck remnant or with remnant flow into the aneurysm. In cases of arteriovenous malformation or arteriovenous fistula, feeding arteries and draining veins were easily distinguished.
Conclusions
This system allows observation of the operative field and enhanced blood flow by ICG together in real time and may facilitate various types of neurovascular surgery. |
---|---|
ISSN: | 0001-6268 0942-0940 |
DOI: | 10.1007/s00701-015-2481-x |