Designing a high-throughput viscous heater to process feces: heater geometry

Viscous heating technology can destroy disease-causing microorganisms with no additional heat input. A laboratory-scale unit was constructed and tested with a simulant, and viscous heating achieved temperatures as high as 190°C. This study discusses additional variables – length and spacing – that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water, sanitation, and hygiene for development sanitation, and hygiene for development, 2015-09, Vol.5 (3), p.521-524
Hauptverfasser: Podichetty, Jagdeep T., Foutch, Gary L., Johannes, A. H., Smay, Jim, Islam, Md. Waliul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viscous heating technology can destroy disease-causing microorganisms with no additional heat input. A laboratory-scale unit was constructed and tested with a simulant, and viscous heating achieved temperatures as high as 190°C. This study discusses additional variables – length and spacing – that are important to process design and optimization. The viscosity (μ) was described as a function of shear rate (γ̇); μ = 140 Pa s for t = 0 s and μ = 32*(γ̇)−0.6 Pa s for t > 0 s. The advantages of viscous heating to sanitize fecal mass are presented. The results show temperature gradient is more sensitive to changes in gap spacing than reactor length. For high throughput, the viscous heater length must be increased to provide fluid sufficient residence time to achieve the desired effluent temperature.
ISSN:2043-9083
2408-9362
DOI:10.2166/washdev.2015.176